Steady dynamos in finite domains: an integral equation approach
نویسندگان
چکیده
The paper deals with the integral equation approach to steady kinematic dynamo models in finite domains based on Biot-Savart’s law. The role of the electric potential at the boundary is worked out explicitly. As an example, a modified version of the simple spherical α-effect dynamo model proposed by Krause and Steenbeck is considered in which the α-coefficient is no longer constant but may vary with the radial coordinate. In particular, the results for the original model are re-derived. Possible applications of this integral equation approach for numerical simulations of dynamos in arbitrary geometry and for an ”inverse dynamo theory” are sketched.
منابع مشابه
Solution of Thermo-Fluid problems in Bounded Domains via the Numerical Panel Method
The classical panel method has been extensively used in external aerodynamics to calculate ideal flow fields around moving vehicles or stationary structures in unbounded domains. However, the panel method, as a somewhat simpler implementation of the boundary element method, has rarely been employed to solve problems in closed complex domains. This paper aims at filling this gap and discusses th...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کاملTurbulent Flow in 2-D Domains with Complex Geometry-Finite Elelment Method
Using the highly recommended numerical techniques, a finite element computer code is developed to analyse the steady incompressible, laminar and turbulent flows in 2-D domains with complex geometry. The Petrov-Galerkin finite element formulation is adopted to avoid numerical oscillations. Turbulence is modeled using the two equation k-ω model. The discretized equations are written in the form o...
متن کاملThe integral equation approach to kinematic dynamo theory and its application to dynamo experiments in cylindrical geometry
The conventional magnetic induction equation that governs hydromagnetic dynamo action is transformed into an equivalent integral equation system. An advantage of this approach is that the computational domain is restricted to the region occupied by the electrically conducting fluid and to its boundary. This integral equation approach is first employed to simulate kinematic dynamos excited by Be...
متن کاملPressure-Velocity Coupled Finite Volume Solution of Steady Incompressible Invscid Flow Using Artificial Compressibility Technique
Application of the computer simulation for solving the incompressible flow problems motivates developing efficient and accurate numerical models. The set of Inviscid Incompressible Euler equations can be applied for wide range of engineering applications. For the steady state problems, the equation of continuity can be simultaneously solved with the equations of motion in a coupled manner using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000